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Stable bimetallic ‘capped’ metallocenes are formed by the
reaction of Cp*2M (M = Fe, Ru, Os) with the manganese
tricarbonyl transfer reagent [(h6-naphthalene)Mn(CO)3]+.

Multimetallic complexes have generated great interest for many
years due to their potentially useful electronic, redox and
catalytic properties in comparison to monometallic analogues.
Bimetallic ‘triple-decker’ complexes 1 containing cyclopenta-

dienyl, arene, and/or related heterocyclic p-ligands have been
widely studied.1 Bimetallics having the general structure 2, in
which a coordinated p-ring system is ‘capped’ with a M(CO)n

carbonyl moiety, are much less common. Furthermore, in each
complex of type 2 reported, the ring bridging the two metals is
heterocyclic, most commonly being a borole based system.2
Here we report the synthesis and characterization of bimetallic
[Mn(CO)3]+ capped metallocenes 3-Fe,Ru,Os, in which the
bridging ligand is strictly carbocyclic.

It was recently shown by Chung and coworkers,3 that
ferrocene undergoes ring exchange with [(h6-naphthal-
ene)Mn(CO)3]+ according to eqn. (1). Since it is known4 that

[(h6-C10H8)Mn(CO)3]+ + [Cp2Fe] ?
[(h6-C10H8)FeCp]+ + [CpMn(CO)3] (1)

[(h6-polyarene)Mn(CO)3]+ complexes readily transfer the
[Mn(CO)3]+ moiety to suitable donor sites, it seemed possible
that the bimetallic species [Cp–Fe–Cp–Mn(CO)3]+, in which
one of the Cp rings is coordinated to both metals, occurs as an
intermediate in this reaction. No such intermediate was actually
observed with ferrocene, but we now report that changing the
potential ‘donor’ from Cp2Fe to the more electron-rich Cp*2M
(M = Fe, Ru, Os) results in the formation of stable isolable
bimetallic capped metallocenes 3-Fe, 3-Ru and 3-Os.

Refluxing equimolar amounts of Cp*2M and the manganese
tricarbonyl transfer reagent4 [(h6-polyarene)Mn(CO)3]BF4
(polyarene = 1-methylnaphthalene or acenaphthene) in
CH2Cl2, followed by standard work-up procedures, led to
moderate yields of the air-stable capped metallocenes [3]BF4
(M = Fe, Ru, Os).5 The iron complex is green while the
ruthenium and osmium complexes are orange. The capped
structure indicated for 3 is supported by IR, elemental analysis,
MS, 1H NMR, and 13C NMR data (Table 1). Attempts to grow
crystals of [3]BF4 suitable for X-ray diffraction were not
successful. However, acceptable crystals of [3-Ru]PF6 were

obtained by diethyl ether vapor diffusion into a CH2Cl2 solution
of [3-Ru]BF4 containing a large excess of NH4PF6.

The X-ray structure of the cation in [3-Ru]PF6 is shown in
Fig. 1.6 Both Cp* rings are highly planar (rms deviations 0.030,
0.019 Å) and adopt a staggered conformation. In contrast, the
rings in Cp*2Ru are eclipsed in the solid state.7 The singly
coordinated Cp* ring in [3-Ru]PF6 has an average Ru–C bond
length of 2.16 Å and an average ring C–C bond length of 1.42 Å.
The corresponding distances in Cp*2Ru are 2.18 and 1.42 Å.7

Table 1 Characterization data for the capped metallocenes
[Cp*MCp*Mn(CO)3]BF4

Fe Ru Os

nCO/cm21

(CH2Cl2)
2050, 1975 2048, 1974 2051, 1976

EA (%):
C(calc., found)

H(calc., found)
50.04, 49.85
5.48, 5.43

46.25, 46.15
5.06, 5.00

40.24, 40.34
4.40, 4.14

dH(CD2Cl2) 2.61(s), 1.66(s) 2.44(s), 1.59(s) 2.57(s), 1.62(s)
dC(CD2Cl2) 81.86, 81.33,

12.60, 8.31
87.56, 82.07,
12.96, 9.13

85.66, 72.66,
13.15, 9.63

E1⁄2/V (CH2Cl2)a 21.44 21.46 21.42

a At 25 °C, 0.10 M NBu4PF6, 500 mV s21, relative to Fc+/Fc = 0.00 V.

Fig. 1 Crystal structure of the cation in [3-Ru]PF6. Selected bond lengths
(Å) and angles (°): Mn–C(11) 2.180(7), Mn–C(12) 2.136(9), Mn–C(13)
2.186(5), Mn–C(14) 2.222(10), Mn–C(15) 2.163(13), Ru–C(11) 2.181(7),
Ru–C(12) 2.225(7), Ru–C(13) 2.223(5), Ru–C(14) 2.215(11), Ru–C(15)
2.238(12), Ru–C(1) 2.144(5), Ru–C(2) 2.114(13), Ru–C(3) 2.203(12), Ru–
C(4) 2.160(9), Ru–C(5) 2.182(9); Mn–C(21)–O(1) 176.1(10), Mn–C(22)–
O(2) 169.6(9), Mn–C(23)–O(3) 167.6(10).
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The reduced electron density in the doubly coordinated Cp*
ring is reflected in longer average Ru–C and C–C bonds, 2.22
and 1.46 Å, respectively. The average Mn–C bond distance to
the Cp* ring is 2.18 Å, which is ca. 0.04 Å longer than that
typically found in neutral [(cyclopentadienyl)Mn(CO)3] com-
plexes.8

The 1H NMR data in Table 1 for the Cp* methyls show a
resonance at d ca.1.6, which is near that found for free Cp*2M.
The Cp* ring in 3-Fe,Ru,Os that is bonded to both metals,
however, has methyls shifted ca. 1 ppm downfield. This
demonstrates the deshielding effect of the cationic [Mn(CO)3]+

fragment. Table 1 shows that the nCO bands for 3-Fe,Ru,Os are
at ca. 2050 and 1975 cm21. By comparison, the nCO bands
occur at 2005 and 1914 cm21 for [Cp*Mn(CO)3] and at 2062
and 2002 cm21 for [(h6-C6Me6)Mn(CO)3]+. From this one
concludes that electron donation to the [Mn(CO)3]+ moiety is in
the order C5Me5

2 > > Cp*MCp* > C6Me6 and that much of
the positive charge (LUMO) in 3 resides on the [Mn(CO)3]
fragment. This assertion is supported by electrochemical data,
which show that the 30-electron bimetallic 3 is reduced in a one-
electron chemically reversible manner at ca. 21.4 V relative to
ferrocene. This is about the potential at which [(h6-mono-
arene)Mn(CO)3]+ complexes undergo reduction, although these
species do so in a chemically irreversible manner.9 In any case,
the 31-electron neutral radical produced from 3 must have
substantial stability for all three metals, and this aspect of the
chemistry will be explored in future work.

Complexes 3-Fe,Ru,Os are remarkably stable in CH2Cl2 and
did not undergo a detectable reaction with P(OEt)3 over 30 min.
Similarly, a CH2Cl2 solution of 3-Ru in the presence of
naphthalene was unchanged after refluxing overnight. In MeCN
solvent at room temperature, 3-Ru was found to react with a
half-life of ca. 1 h to afford predominantly the ring transfer
product, [Cp*Mn(CO)3], along with [Cp*Ru(MeCN)3]+. In
contrast, the major products obtained from 3-Fe in MeCN were
[(MeCN)3Mn(CO)3]+ and Cp*2Fe, with a half-life of ca. 5 h.
This difference in reaction pathway may be due to easier
nucleophilic attack by MeCN at the larger ruthenium center,
with concomitant Cp* ring displacement. The isolation and
stability of 3-Fe,Ru,Os strongly suggests a capped bimetallic as
an intermediate in eqn. (1). An attempt was made to detect this
species in the reaction of [(naphthalene)Mn(CO)3]+ with the
bridged metallocene [3]ferrocenophane, the idea being that the
–(CH2)3– strap would slow or prevent the Fe–Cp cleavage for
entropy reasons. Unfortunately, the reaction was found to
proceed analogously to eqn. (1).

In conclusion, we have shown that stable metal carbonyl
capped metallocenes can be prepared from Cp*2M.
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